import com.shigeodayo.ardrone.processing.*; import java.util.Timer; import gab.opencv.*; import java.awt.*; // for Rectangle ARDroneForP5 ardrone; OpenCV opencv; boolean stop = false; char state = 'n'; int start_time = 0; void setup() { size(640, 360); ardrone=new ARDroneForP5("192.168.1.1"); // connect to the AR.Drone ardrone.connect(); // for getting sensor information ardrone.connectNav(); // for getting video information ardrone.connectVideo(); // start to control AR.Drone and get sensor and video data of it ardrone.start(); // set OpenCV window opencv = new OpenCV(this, width, height); // set dataset for OpenCV opencv.loadCascade(OpenCV.CASCADE_FRONTALFACE); // face data //opencv.loadCascade(OpenCV.CASCADE_EYE); // eye data //opencv.loadCascade(OpenCV.CASCADE_MOUTH); // mouth data } void draw() { background(204); // getting image from AR.Drone // true: resizeing image automatically; // false: not resizing PImage img = ardrone.getVideoImage(false); if (img == null) return; // load an image ("img") to opencv opencv.loadImage(img); // Image Processing //opencv.findCannyEdges(50, 200); // edge detection //opencv.blur(12); // shading off //img = opencv.getSnapshot(); image(img, 0, 0); // display the processed image /** Rectangle[] faces = opencv.detect(); // detection noFill(); stroke(0, 255, 0); strokeWeight(5); for (int i = 0; i < faces.length; i++) { rect(faces[i].x, faces[i].y, faces[i].width, faces[i].height); } **/ // print out AR.Drone information // ardrone.printARDroneInfo(); // getting sensor information of AR.Drone float pitch = ardrone.getPitch(); float roll = ardrone.getRoll(); float yaw = ardrone.getYaw(); float altitude = ardrone.getAltitude(); float[] velocity = ardrone.getVelocity(); int battery = ardrone.getBatteryPercentage(); String attitude = "pitch:" + pitch + "\nroll:" + roll + "\nyaw:" + yaw + "\naltitude:" + altitude; text(attitude, 20, 85); String vel = "vx:" + velocity[0] + "\nvy:" + velocity[1]; text(vel, 20, 140); String bat = "battery:" + battery + " %"; text(bat, 20, 170); float vx = velocity[0], vy = velocity[1]; if(stop){ int lr = (int)vy / 15; int fb = (int)vx / 15; ardrone.parallel(-lr, fb); } int ms = millis(); String time = "time:" + ms; text(time, 20, 210); if(state=='w'){ square(ms); } } //PC AR.Drone // controlling AR.Drone through key input void keyPressed() { stop = false; if (key == CODED) { if (keyCode == UP) { state='f'; ardrone.forward(); // go forward } else if (keyCode == DOWN) { state='b'; ardrone.backward(); // go backward } else if (keyCode == LEFT) { state='l'; ardrone.goLeft(); // go left } else if (keyCode == RIGHT) { state='r'; ardrone.goRight(); // go right } else if (keyCode == SHIFT) { ardrone.takeOff(); // take off, AR.Drone cannot move while landing stop = true; } else if (keyCode == CONTROL) { state = 'n'; ardrone.landing(); // landing } } else { if (key =='w'){ state='w'; start_time = millis(); } else if (key == 's') { state = 's'; stop = true; ardrone.stop(); } else if (key == 'r') { ardrone.spinRight(); // spin right } else if (key == 'l') { ardrone.spinLeft(); // spin left } else if (key == 'u') { ardrone.up(); // go up } else if (key == 'd') { ardrone.down(); // go down } else if (key == '1') { ardrone.setHorizontalCamera(); // set front camera } else if (key == '2') { ardrone.setHorizontalCameraWithVertical(); // set front camera with second camera (upper left) } else if (key == '3') { ardrone.setVerticalCamera(); // set second camera } else if (key == '4') { ardrone.setVerticalCameraWithHorizontal(); //set second camera with front camera (upper left) } else if (key == '5') { ardrone.toggleCamera(); // set next camera setting } else if (key == 'e'){ ardrone.parallel(-5,5); } } } void square(int ms){ int time = ms - start_time; int speed = 10; if(time <1000){ stop=true; }else if(time < 4000){ stop=false; ardrone.forward(speed); }else if(time < 8000){ stop = true; } else if (time < 11000){ stop=false; ardrone.goRight(speed); } else if(time < 16000){ stop = true; } else { stop = false; state = 'n'; ardrone.landing(); } }